Решите уравнение, используя введение новой переменной: а) (2х2 + З)2 – 12 ⋅ (2х2 + 3) + 11 = 0; б) (t2 – 2t)2 – 3 = 2(t2 – 2t); в) (x2 + x – 1) ⋅ (x2 + x + 2) = 40; г) (2x2 + x – 1) ⋅ (2x2 + x – 4) + 2 = 0.

а) (2х2 + З)2 – 12 ⋅ (2х2 + 3) + 11 = 0

Замена 2x2 + 3 = t

t2 – 12t + 11 = 0

D = (-12)2 – 4 1 11 = 144 – 44 = 100 больше 0

D = 100 = 102 = 10

t1 = -(-12) – 10 / 2 = 12 – 10 / 2 = 2/2 = 1

t2 = -(-12) + 10 / 2 = 12 + 10 / 2 = 22/2 = 11

t = 1

2x2 + 3 = 1

2x2 = 1 – 3

2x2 = -2

x2 = -1 нет корня

при t = 11

2x2 + 3 = 11

2x2 = 11 – 3

2x2 = 8

x2 =4

x = +-4

x = +-2

б) (t2 – 2t)2 – 3 = 2(t2 – 2t)

Замена t2 – 2t = x

x2 – 3 – 2x = 0

x2 – 2x – 3 = 0

D = (-2)2 – 4 1 (-3) = 4 + 12 = 16 больше 0

D = 16 = 42 = 4

x1 = -(-2) – 4 / 2 = 2 – 4 / 2 = -2/2 = -1

x2 = -(-2) + 4 / 2 = 2 + 4 / 2 = 6/2 = 3

x = -1

t2 – 2t = -1

t2 – 2x + 1 = 0

(t – 1)2 = 0

t – 1 = 0

t = 1

При x = 3

t2 – 2t = 3

t2 – 2x – 3 = 0

D = (-2)2 – 4 1 (-3) = 4 + 12 = 16 больше 0

D = 16 = 42 = 4

t1 = -(-2) – 4 / 2 = 2 – 4 / 2 = -2/2 = -1

t1 = -(-2) + 4 / 2 = 2 + 4 / 2 = 6/2 = 3

в) (x2 + x – 1) ⋅ (x2 + x + 2) = 40

Замена x2 + x = t

(t – 1) ( t + 2) = 40

t2 + 2t – t – 2 – 40 = 0

t2 + t – 42 = 0

D = 12 – 4 1 (-42) = 1 + 168 = 169 больше 0

D = 169 = 132 = 13

t1 = – 1 – 13 / 2 = – ( 1 + 13) / 2 = – 14 / 2 = -7

t2 = – 1 + 13 / 2 = – ( 13 – 1) / 2 = 12 / 2 = 6

При t = – 7

x2 + x = -7

x2 + x + 7 = 0

D = 12 – 4 1 7 = 1 – 28 = – 27 больше 0 корней нет

D = 25 = 52 = 5

x1 = – 1 – 5 / 2 = – (1 + 5) / 2 = – 6 / 2 = -3

x2 = – 1 + 5 / 2 = – (5 – 1) / 2 = 4 / 2 = 2

x = -3; x = 2

г) (2x2 + x – 1) ⋅ (2x2 + x – 4) + 2 = 0

Замена 2x2 + x = t

(t – 1) (t – 4) + 2 = 0

t2 – 4t – t + 4 + 2 = 0

t2 – 5t + 6 = 0

D = (-5)2 – 4 1 6 = 25 – 24 = 1 больше 0

D = 1 = 1

t1 = -(-5) – 1 / 2 = 5 – 1 / 2 = 4 / 2 = 2

t2 = -(-5) + 1 / 2 = 5 + 1 / 2 = 6 / 2 = 3

При t = 2

2x2 + x = 2

2x2 + x – 2 = 0

D = 12 – 4 2 (-2) = 1 + 16 = 17 больше 0

D = 17

x1 = – 1 – 17 / 2 2 = – 1 – 17 / 4

x2 = – 1 + 17 / 2 2 = – 1 + 17 / 4

При t = 3

2x2 + x = 3

2x2 + x – 3 = 0

D = 12 – 4 2 (-3) = 1 + 24 = 25 больше 0

D = 25 = 52 = 5

x1 = -1 – 5 / 2 2 = – ( 1 + 5) / 4 = – 6/4 = -1,5

x2 = -1 + 5 / 2 2 = 5 – 1 / 4 = 4/4 = 1

x = – 1 +- 17 / 4; x = -1,5; x = 1

Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить решение!

Средняя оценка 0 / 5. Количество оценок: 0

Оценок пока нет. Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?