Решите уравнение: а) (x2 + 3)2 – 11⋅ (x2 + 3) + 28 = 0; б) (x2 – 4x)2 + 9 ⋅ (x2 – 4x) + 20 = 0; в) (x2 + x) ⋅ (x2 + x – 5) = 84.
Решение:
а) (x2 + 3)2 – 11⋅ (x2 + 3) + 28 = 0
Замена x2 + 3 = t
t2 – 11t + 28 = 0
D = (-11)2 – 4 ⋅ 1 ⋅ 28 = 121 – 112 = 9 больше 0
√D = √9 = √32 = 3
t1 = -(-11) – 3 / 2 = 11 – 3 / 2 = 8 / 2 = 4
t2 = -(-11) + 3 / 2 = 11 + 3 / 2 = 14 / 2 = 7
При t = 4
x2 + 3 = 4
x2 = 4 – 3
x2 = 1
При t = 7
x2 + 3 = 7
x2 = 7 – 3
x2 = 4
x = +-2
б) (x2 – 4x)2 + 9 ⋅ (x2 – 4x) + 20 = 0
Замена x2 – 4x = t
t2 + 9t + 20 = 0
D = 92 – 4 ⋅ 1 ⋅ 20 = 81 – 80 = 1 больше 0
√D = √1 = 1
t1 = – 9 – 1 / 2 = -(9 + 1) / 2 = – 10 / 2 = – 5
t2 = – 9 + 1 / 2 = -(9 – 1) / 2 = 8 / 2 = – 4
При t = – 5
x2 – 4x = – 5
x2 – 4x + 5 = 0
D = (-4)2 – 4 ⋅ 1 ⋅ 5 = 16 – 20 = -4 меньше 0 нет корней
При t = -4
x2 – 4x = -4
x2 – 4x + 4 = 0
x – 22 = 0
x – 2 = 0
x = 2
в) (x2 + x) ⋅ (x2 + x – 5) = 84
Замена x2 + x = t
t(t – 5) = 84
t2 – 5t – 84 = 0
D = (-5)2 – 4 ⋅ 1 ⋅ (-84) = 25 + 336 = 361 больше 0
√D = √361 = √192 = 19
t1 = – (-5) – 19 / 2 = 5 – 19 / 2 = – 14 / 2 = – 7
t2 = – (-5) + 19 / 2 = 5 + 19 / 2 = 24 / 2 = 12
При t = – 7
x2 + x = – 7
x2 + x + 7 = 0
D = 12 – 4 ⋅ 1 ⋅ 7 = 1 – 28 = -27 меньше 0 корней нет
При t = 12
x2 + x = 12
x2 + x – 12 = 0
D = 12 – 4 ⋅ 1 ⋅ (-12) = 1 + 48 = 49 больше 0
√D = √ 49 = √72 = 7
x1 = – 1 – 7 / 2 = – (1 + 7) / 2 = – 8/2 = -4
x2 = – 1 + 7 / 2 = 7 – 1 / 2 = 6/2 = 3
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.