Решите уравнение: а) у3 – 6у = 0; б) 6х4 + 3,6х2 = 0; в) х3 + 3х = 3,5х2; г) х3 – 0,1х = 0,3х2; д) 9х3 – 18х2 – х + 2 = 0; е) у4 – у3 – 16у2 + 16у = 0; ж) р3 – р2 = р – 1; з) х4 – х2 = Зх3 – 3х.
Решение:
а) у3 – 6у = 0
y (y2 – 6) = 0
y = 0 или y2 – 6 = 0
y2 = 6
y = +-√6
y = 0; y = +-√6
б) 6х4 + 3,6х2 = 0
6x2 (x2 + 0,6) = 0
x2 = 0 или x2 + 0,6 = 0
x = 0 x2 = – 0,6 – нет корней
в) х3 + 3х = 3,5х2
x3 + 3x – 3,5x2 = 0
x(x2 + 3 – 3,5x) = 0
x = 0 или x2 – 3,5x + 3 = 0
2x2 – 7x + 6 = 0
D = (-7)2 – 4 ⋅ 2 ⋅ 6 = 49 – 48 = 1 > 0
√D = √1 = 1
x1 = -(-7) – 1 / 2 ⋅ 2 = 7 – 1 / 4 = 6 / 4 = 1,5
x2 = -(-7) + 1 / 2 ⋅ 2 = 7 + 1 / 4 = 8 /4 = 2
x = 0; x = 1,5; x = 2
г) х3 – 0,1х = 0,3х2
x3 – 0,1x – 0,3x2 = 0
x(x2 – 0,1 – 0,3x) = 0
x = 0 или x2 – 0,3x – 0,1 = 0
10x2 – 3x – 1 = 0
D = (-3)2 – 4 ⋅ 10 ⋅ (-1) = 9 + 40 = 49 > 0
√D = √49 = √72 = 7
x1 = – (-3) – 7 / 2 ⋅ 10 = 3 – 7 / 20 = – 4 / 20 = -0,2
x2 = – (-3) + 7 / 2 ⋅ 10 = 3 + 7 / 20 = 10/20 = 0,5
д) 9х3 – 18х2 – х + 2 = 0
9x2 (x – 2) – (x – 2) = 0
(x – 2) (9x2 – 1) = 0
x – 2 = 0 или 9x2 – 1 = 0
9x2 = 1
x2 = 1/9
x = +-√ 1/9
x = +- 1/3
x = 2; x = +-1/3
е) у4 – у3 – 16у2 + 16у = 0
y3 (y – 1) – 16y(y – 1) = 0
(y – 1) (y3 – 16y) = 0
y(y – 1) (y2 – 16) = 0
y = 0 или y – 1 = 0 или y2 – 16 = 0
y = 1 y2 = 16
y = +-√16
y = +-4
y = 0; y = 1; y = +-4
ж) р3 – р2 = р – 1
p3 – p2 – p + 1 = 0
p2 (p – 1) – (p – 1) = 0
(p – 1) (p2 – 1) = 0
p – 1 = 0 или p2 – 1 = 0
p = 1 p2 = 1
p = +-1
p = +-1
з) х4 – х2 = 3х3 – 3х
x4 – x2 – 3x3 + 3x = 0
x2 (x2 – 1) – 3x (x2 – 1) = 0
(x2 – 1) (x – 3) = 0
x (x2 – 1) ( x – 3) = 0
x = 0 или x2 – 1 = 0 или x – 3 = 0
x2 = 1 x = 3
x = +-1
x = +- 1; x = 0; x = 3
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.