Решите уравнение: а) х3 + 7х2 – 6 = 0; б) х3 + 4х2 – 5 = 0.
Решение:
а) х3 + 7х2 – 6 = 0
x3 + 7x2 – 6 = x3 + x2 + 6x2 – 6 = x2 (x + 1) + 6(x2 – 1) = x2 (x + 1) + 6 (x – 1) ⋅ ( x + 1) = (x + 1) ⋅ (x2 + 6(x – 1) = (x + 1) ⋅ ( x2 + 6x – 6)
(x + 1) ⋅ (x2 + 6x – 6) = 0
x + 1 = 0 или x2 + 6x – 6 = 0
x = -1
D = 62 – 4 ⋅ 1 ⋅ (-6) = 36 + 24 = 60 > 0
√D = √60 = √4 ⋅ 15 = √22 ⋅ 15 = 2√15
x1 = – 6√ – 2 √15 / 2 = 2 (-3 + √15) / 2 = -3 + √15
x2 = – 6 + 2√15 / 2 = 2 (-3 + √15) / 2 = -3 + √15
x = -1; x = -3 +-√15
б) х3 + 4х2 – 5 = 0
x3 + 4x2 – 5 = x3 – x2 + 5x2 – 5 = x2 (x – 1) + 5 (x2 – 1) = x2 ( x – 1) + 5(x – 1) ⋅ ( x + 1) = (x – 1) (x2 + 5 (x + 1)) = (x – 1) ⋅ ( x2 + 5x + 5)
(x – 1) ⋅ (x2 + 5x + 5) = 0
x – 1 или x2 + 5x + 5 = 0
x = 1
D = 52 – 4 ⋅ 1 ⋅ 5 = 25 – 20 = 5 > 0
√D = √5
x1 = -5 – √5 / 2 = -5 – √5 / 2
x2 = -5 + √5 / 2 = -5 + √2 / 2
x = 1; x = -5 + √5 / 2
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.