Решите уравнение: а) (2 / x – 2) – (10 / x + 3) = ((50 / (x2 + x – 6)) – 1; б) ((x + 5) / (x – 1)) + ((2x – 5) / (x – 7)) – ((30 – 12x) / (8x – x2 – 7)) = 0.
Решение:
а) (2 / x – 2) – (10 / x + 3) = ((50 / (x2 + x – 6)) – 1
2(x + 3) – 10(x – 2) / x2 + x – 6 = 50 – (x2 + x – 6) / x2 + x – 6
2x + 6 – 10x + 20 = 50 – x2 – x + 6
-8x + 26 = – x2 – x + 56
x2 – 8x + x + 26 – 56 = 0
x2 – 7x – 30 = 0
x1 ⋅ x2 = – 30
x1 + x2 = 7
x1 = -3
x2 = 10
x = – 3
x2 + x – 6 = (-3)2 + (-3) – 6 = 9 – 3 – 6 = 0
Тогда x = 10
x2 + x – 6 = 102 + 10 – 6 = 100 + 4 = 104
x = 10
б) ((x + 5) / (x – 1)) + ((2x – 5) / (x – 7)) – ((30 – 12x) / (8x – x2 – 7)) = 0
x + 5 / x – 1 + 2x – 5 / x – 7 – 30 – 12x / -(x2 – 8x + 7) = 0
x + 5 / x – 1 + 2x – 5 / x – 7 + 30 – 12x / x2 – 8x + 8 = 0
(x + 5) (x – 7) + (2x – 5) (x – 1) + 30 – 12x = 0
x2 + 5x – 7x – 35 + 2x2 – 2x – 5x + 5 + 30 – 12x = 0
3x2 – 21x = 0
3x(x – 7) = 0
x = 0 или x – 7 = 0
x = 7
Тогда x = 0
x2 – 8x + 7 = 02 – 8 ⋅ 0 + 7 = 7
Тогда x = 7
x2 – 8x + 7 = 72 – 8 ⋅ 7 + 7 = 49 – 56 + 7 = 0
x = 0
Ответ: а) x = 10 ; б) x = 0
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.