Решите систему уравнений:
а) (х – 2) ⋅ (у + 3) = 160, у – х = 1
б) (х – 1) ⋅ (у + 10) = 9, х – у = 11.
Решение:
а) (х – 2) ⋅ (у + 3) = 160
у – х = 1
1) y – x = 1
y = x + 1
2) (x – 2) (x + 1 + 3) = 160
(x – 2) (x + 4) = 160
x2 – 2x + 4x – 8 – 160 = 0
x2 + 2x – 168 = 0
D = 22 – 4 ⋅ 1 ⋅ (-168) = 4 + 672 = 676 > 0
Есть 2 корня
x1 = -2 + √ 676 / 2 = -2 + 26 / 2 = 24 / 2 = 12
x2 = -2 – √ 676 / 2 = -2 – 26 / 2 = -28 / 2 = – 14
3) При x = 12
y = 12 + 1 = 13
При x = -14
y = – 14 + 1 = -13
(12;13) , (-14;-13)
б) (х – 1) ⋅ (у + 10) = 9
х – у = 11.
1) x – y = 11
y = x – 11
2) (x – 1) (x – 11 + 10) = 9
(x – 1) ( x – 1) = 9
(x – 1)2 – 9 = 0
x2 – 2x + 1 – 9 = 0
x2 – 2x – 8 = 0
D = (-2)2 – 4 ⋅ 1 ⋅ (-8) = 4 + 32 = 36 > 0
Имеется 2 корня
x1 = 2 + √ 36 / 2 = 2 + 6 / 2 = 8 / 2 = 4
x2 = 2 – √ 36 / 2 = 2 – 6 / 2 = -4 / 2 = – 2
3) При x = 4
y = 4 – 11 = -7
При x = -2
y = -2 – 11 = -13
(4; -7), (-2; -13)
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.