Решите неравенство:
а) 2х(3х – 1) > 4х2 + 5х + 9;
б) (5х + 7)(х – 2) < 21х2 – 11х – 13.
Решение:
а) 2х(3х – 1) > 4х2 + 5х + 9;
6x2 – 2x > 4x2 + 5x + 9
6x2 – 2x – 4x2 – 5x – 9 > 0
2x2 – 7x – 9 > 0
D = (-7)2 – 4 ⋅ 2 ⋅ (-9) = 49 + 72 = 121
x1 = -(-7) – 11 / 2 ⋅ 2 = 7 – 11 / 4 = – 4/4 = -1
x2 = -(-7) + 11 / 2 ⋅ 2 = 7 + 11 / 4 = 18/4 = 9/2 = 4,5
x (-∞; -1) U (4,5; +∞)
б) (5х + 7)(х – 2) < 21х2 – 11х – 13.
5x2 – 10x + 7x – 14 < 21x2 – 11x – 13
5x2 – 3x – 14 < 21x2 – 11x – 13
5x2 – 3x – 14 – 21x2 + 11x + 13 < 0
– 16x2 + 8x – 1 < 0
– 16x2 + 8x – 1 = 0
16x2 – 8x + 1 = 0
(4x – 1)2 = 0
4x – 1 = 0
4x = 1
x = 1: 4
x = 0,25
x (-∞; 0,25) U (0,25; + ∞)
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.