Решите биквадратное уравнение: а) x4 – 5x2 – 36 = 0; б) y4 – 6y2 + 8 = 0; в) t4 + 10t2 + 25 = 0; г) 4x4 – 5x2 +1 = 0; д) 9x4 – 9x2 + 2 = 0; e) 16y4 – 8y2 + 1 = 0.
Решение:
а) x4 – 5x2 – 36 = 0
Замена x2 = t больше 0
t2 – 5t – 36 = 0
t1 ⋅ t2 = -36
t1 + t2 = 5
t1 = 9
t2 = -4 посторонний
При t = 9
x2 = 9
x = +-√9
x = +-3
б) y4 – 6y2 + 8 = 0
Замена y2 = t больше 0
t2 – 6t + 8 = 0
t1 ⋅ t2 = 8 t1 = 4
t1 + t2 = 6 t2 = 2
При t = 2
y2 = 2
y +-√ 2
При t = 4
y2 = 4
y = +-√4
y = +-2
в) t4 + 10t2 + 25 = 0
(t2 + 5)2 = 0
t2 + 5 = 0
t2 = -5 нет корней
г) 4x4 – 5x2 +1 = 0
Замена x2 = t больше 0
4t2 – 5t + 1 = 0
D = (-5)2 – 4 ⋅ 4 ⋅ 1 = 25 – 16 = 9 больше 0
√D = √9 = √32 = 3
t1 = – (-5) – 3 / 2 ⋅ 4 = 5 – 3 / 8 = 2/8 = 0,25
t2 = – (-5) + 3 / 2 ⋅ 4 = 5 + 3 / 8 = 8/8 = 1
При t = 0,25
x2 = 0,25
x = +-0,5
При t = 1
x2 = 1
x = +-1
д) 9x4 – 9x2 + 2 = 0
Замена x2 = t больше 0
9t2 – 9t + 2 = 0
D = (-9)2 – 4 ⋅ 2 = 81 – 72 = 9 больше 0
√D = √9 = √32 = 3
t1 = – (-9) – 3 / 2 ⋅ 9 = 9 – 3 / 18 = 6 / 18 = 1/3
t2 = – (-9) + 3 / 2 ⋅ 9 = 9 + 3 / 18 = 12 / 18 = 2/3
При t = 1/3 При t = 2/3
x2 = 1/3 x2 = 2/3
x = +-√1/3 x = +-√2/3
x = +-√3/9 x = +-√6/9
x = +-√3/3 x = +-√6/3
e) 16y4 – 8y2 + 1 = 0
(4y2 – 1)2 = 0
4y2 – 1 = 0
4y2 = 1
y2 = 0,25
y = +-√ 0,25
y = +- 0,5
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.