Разложите на множители квадратный трехчлен: а) Зх2 – 25х – 28; б) 2х2 + 13х – 7.
Решение:
а) Зх2 – 25х – 28
D = (-25)2 – 4 ⋅ 3 ⋅ (-28) = 625 + 336 = 961 больше 0
√D = √961 = √312 = 31
x1 = -(-25) – 31 / 2 ⋅ 3 = 25 – 31 / 6 = -6/6 = -1
x2 = -(-25) + 31 / 2 ⋅ 3 = 25 + 31 / 6 = 56/6 = 28/3
3x2 – 25x – 28 = 3(x – (-1)) ⋅ (x – 28/3) = (x + 1) ⋅ ( 3 ⋅ x – 3 ⋅ 28/3) = (x + 1) ⋅ (3 ⋅ x – 3 ⋅ 28/3) = (x + 1) (3x – 28)
б) 2х2 + 13х – 7
D = 132 – 4 ⋅ 2 ⋅ (-7) = 169 + 56 = 225 больше 0
√D = √225 = √152 = 15
x1 = -13 – 15 / 2 ⋅ 2 = -28 / 4 = -7
x2 = -13 + 15 / 2 ⋅ 2 = 2 / 4 = 1/2
2x2 + 13x – 7 = 2(x -(-7)) ⋅ (x – 1/2) = (x + 7) ⋅ (2 ⋅ x – 2 ⋅ 1/2) ⋅ (x + 7) ⋅ (2x – 1)
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.