Найдите множество решений неравенства:
а) Зх2 + 40х + 10 < -х2 + 11х + 3;
б) 9х2 – х + 9 >= 3х2 + 18х – 6;
в) 2х2 + 8х – 111 < (3х – 5)(2х + 6);
г) (5х + 1)(3х – 1) > (4х – 1)(х + 2).
Решение:
а) Зх2 + 40х + 10 < -х2 + 11х + 3;
3x2 + 40x + 10 + x2 – 11x – 3 < 0
4x2 + 29x + 7 < 0
D = 292 – 4 ⋅ 4 ⋅ 7 = 841 – 112 = 729 > 0
√D = √729 = √272 = 27
x1 = -29 – 27/2 ⋅ 4 = -(29 + 27) / 8 = – 56/8 = -7
x2 = -29 + 27/2 ⋅ 4 = -(29 – 27) / 8 = – 2/8 = – 0.25
x (-7; -0,25)
б) 9х2 – х + 9 >= 3х2 + 18х – 6;
9x2 – x + 9 – 3x2 – 18x + 6 >= 0
6x2 – 19x + 15 >= 0
D = (-19)2 – 4 ⋅ 6 ⋅ 15 = 361 – 360 = 1
√D = √1 = 1
x1 = -(-19) – 1/2 ⋅ 6 = 19 – 1 / 12 = 18/12 = 3/2 = 1,5
x2 = -(-19) + 1/2 ⋅ 6 = 19 + 1 / 12 = 20/12 = 5/3 = 1 2/3
x (-∞:1,5) U (1 2/3; +∞)
в) 2х2 + 8х – 111 < (3х – 5)(2х + 6);
2x2 + 8x – 111 < 6x2 + 18x – 10x – 30
2x2 + 8x – 111 < 6x2 + 8x – 30
2x2 + 8x – 111 – 6x2 – 8x + 30 < 0
-4x2 – 81 < 0
-4x2 – 81 = 0
-4x2 = 81
x2 = 81 : (-4)
x2 = – 20,25 – корней нет
x (-∞; +∞)
г) (5х + 1)(3х – 1) > (4х – 1)(х + 2)
15x2 – 5x + 3x – 1 > 4x2 + 8x – x – 2
15x2 – 2x – 1 > 4x2 + 7x – 2
15x2 – 2x – 1 – 4x2 – 7x + 2 > 0
11x2 – 9x + 1 > 0
D = (-9)2 – 4 ⋅ 11 ⋅ 1 = 81 – 44 = 37 > 0
√D = √37
x1 = -(-9) – √37 / 2 ⋅ 11 = 9 – √37 / 22
x2 = -(-9) + √37 / 2 ⋅ 11 = 9 + √37 / 22
x (-∞; 9 – √37/22) U (9 + √37/22; +∞)
Источник : Учебник по Алгебре 9 класса авторов Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2014г.